
Lab 5: SEQUENTIAL LOGIC AND FINITE STATE MACHINES
The University of Washington | The Remote Hub Lab | Last Revised: March 2022

Summary
This lab introduces sequential logic and Finite State Machines (FSMs) both in theory and
in SystemVerilog. The lab walks through a full system design problem, analyzing a
problem statement and demonstrating behaviors on FPGAs using SystemVerilog.

Table of Contents
What is a Finite State Machine (FSM)? 2

Figure 1: Automatic Door State Diagram 2
Figure 2: Simpler Automatic Door State Diagram 3
Figure 3: Input/Output System 3
Figure 4: Input/Output System with a Flip Flop for Feedback 3
Table 1: Automatic Door State Table 4

FSM SystemVerilog Structure 5
clock and reset 5
enumerate states 5
always_comb block 5
always_ff block 5
Figure 5: Automatic Door Example FSM - SystemVerilog Module 6
Figure 6: Automatic Door Example FSM - SystemVerilog Testbench 6
Figure 7: Automatic Door Example FSM - ModelSim Waveform 7

Problem Description 8

Design a Finite State Machine to Understand System Behavior 9

Describe Inputs and Outputs with a State Table 10
Table 2: String Recognizer State Table 10

Determine Boolean Expressions for Output Signals Using K-Maps 11

Develop and Simulate the System with SystemVerilog 12
Quartus 12
ModelSim 12

Demonstrate the System on an FPGA 13

Reflection and Observations 14

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 1

https://rhlab.ece.uw.edu/
https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

What is a Finite State Machine (FSM)?
Assume we have a digital system which is an automatic door with two states: open and closed.
If there is movement near the door (input is true), we want the system to be in the “open” state.
When there is no movement nearby (input is false), we want the output to be “closed.” We can
describe this system visually with a “state diagram”, as in Figure 1.

Figure 1: Automatic Door State Diagram

This example depicts the Finite State Machine (FSM): a state diagram with a finite number of
states (two in this case). There are four important things to consider in the FSM:

1. There is a Reset signal which indicates where our system should start after a
reboot.

2. Each state has an arrow for every input possibility.
● In Figure 1, the arrows between states describe when changes occur. Because

there is only one significant input signal (Movement), there are only two
possibilities in each state: ON (Movement is true) and OFF (Movement is false).

● As a result, there are two arrows which originate from the “open” state and two
arrows which originate from the “closed” state.

3. Every arrow is labeled with an Input/Output (I/O) behavior.
● In Figure 1, the arrow starting from the “open” state pointing back to itself

demonstrates the following behavior: when there is movement, the door stays
open (when Movement is true, the output DoorOpen is true).

● The other arrow starting from the “open” state going to the “closed state”
demonstrates the other behavior: when there is no movement, the door closes
(when Movement is false, the output DoorOpen is false and we change states).

4. Because we define there to be only one input (Movement) and one output
(DoorOpen), the I/O pattern can be expressed with 1-bit binary. Because there are
only two states, we can also assign distinct encodings to the states in binary.

● Figure 2 is a simpler (and more common) way to draw an equivalent FSM.

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 2

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Figure 2: Simpler Automatic Door State Diagram

How does a system remember the information it needs to transition between states? In Labs
0-4, we focused on combinational logic which is good for expressing output behaviors as one
Boolean expression. Recall the “mystery box” model from Lab 1, provided in Figure 3.

Figure 3: Input/Output System

However, if we want to define a signal that has memory of what happened before a change,
then we want to understand sequential logic. In this case, we have a new model in Figure 4.

Figure 4: Input/Output System with a Flip Flop for Feedback

Notice how there is a new box called “FF” (representing a flip-flop) which allows the system to
remember states even as time progresses. To express this added information with the Truth
Table, we must add a Present State input column and a Next State output column in addition to
the normal I/O signals. A State Table for the automatic door FSM is provided in Table 1.

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 3

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Table 1: Automatic Door State Table

Table 1 is a direct translation of the state diagram in Figure 2. First, note that our “Truth Table” is
now called a “State Table.” Also, notice that there is an input column “Movement” and an output
column “DoorOpen” for our input and output signals respectively. The “Present State” input
column refers to our state encoding: 0 for “Open” and 1 for “Closed.” So what does each row in
Table 1 mean?

// Abbreviations: PS = Present State; NS = Next State
1. When the door is open → // PS = Open = 0

and there is no movement, → // Movement = 0
the door should close and → // DoorOpen = 0
go to the “Closed” state. → // NS= Closed = 1

2. When the door is open → // PS = Open = 0
and there is movement, → // Movement = 1
the door should be open → // DoorOpen = 1
and stay in the “Open” state. → // NS= Open = 0

3. When the door is closed → // PS = Closed = 1
and there is no movement, → // Movement = 0
the door should be closed → // DoorOpen = 0
and stay in the “Closed” state.→ // NS = Closed = 1

4. When the door is closed → // PS = Closed = 1
and there is movement, → // Movement = 1
the door should open → // DoorOpen = 1
and go to the “Open” state. → // NS = Open = 0

Creating K-Maps for the DoorOpen and NextState signals is left as an exercise for the reader.
However, it is important to note that this process will allow you to arrive at Boolean expressions
for the output signals, and these expressions are programmable in SystemVerilog code.

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 4

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

FSM SystemVerilog Structure
An FSM in SystemVerilog has several new components in addition to those in Lab 4’s
“SystemVerilog Syntax and Main Components” section. Figure 5 shows an example
SystemVerilog module for our automatic door FSM. Figure 6 and Figure 7 provide the testbench
and waveform respectively.

clock and reset

● The clock and reset input signals are needed for sequential logic and flip-flops.
● In the automatic door module (Figure 5), these signals are declared as ports (line 4 and

6) and used in the always_ff block (lines 25-30).
● In the automatic door testbench (Figure 6), lines 44-48 setup the clock, and lines 51-66

simulate the reset and clock signals to test system behavior.

enumerate states

● This enumeration lists the states of your FSM.
● Line 9 in Figure 5 is an example of this enumeration. Notice the special syntax.

always_comb block

● This block encapsulates your next state logic which is combinational. As a result, this
block relies on the present state and next state cases you defined in your FSM.

● Figure 5’s lines 12-19 is an example of the always_comb block. Note that our convention
is to include “case” and “endcase” syntax (lines 13 and 18).

always_ff block

● This block encapsulates your sequential logic. The mechanics of this block are out of the
scope of this lab series, but know that it drives the movement between present states
and next states every clock cycle.

● See lines 25-30 in Figure 5.

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 5

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Figure 5: Automatic Door Example FSM - SystemVerilog Module

Figure 6: Automatic Door Example FSM - SystemVerilog Testbench

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 6

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Figure 7: Automatic Door Example FSM - ModelSim Waveform

Now that we can implement FSMs in SystemVerilog, let’s try a guided design problem so we
can put all that we’ve learned in Labs 0-5 together.

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 7

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Problem Description

Using what you have learned in Labs 0-5, build a string recognizer which outputs
a true only when the string “101” is observed. Note that a string is a sequence of
characters, and our system receives a string of bits “001101010000111…”.

To solve this problem, there are five recommended steps:

1. Design an FSM to understand system behavior.

2. Describe inputs and outputs with a State Table.

3. Determine Boolean expressions for output signals using K-Maps.

4. Develop the system with SystemVerilog (Quartus) and simulate it (ModelSim).

5. Demonstrate the system on an FPGA (LabsLand).

The following sections walk you through this process.

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 8

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Design a Finite State Machine to Understand System Behavior

Draw an FSM diagram corresponding to a string recognizer of ‘101’. Some hints are provided
below.

● How many states do you need? What will you call them (words and binary)?
● How many inputs are there to the system? What will you call them? (Hint: think about the

input signal AND present state inputs.)
● How many outputs are there to the system? What will you call them? (Hint: think about

the output signal AND next state outputs.)

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 9

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Describe Inputs and Outputs with a State Table

Fill in Table 2 to create a State Table for the inputs and outputs of your FSM.

Table 2: String Recognizer State Table

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 10

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Determine Boolean Expressions for Output Signals Using K-Maps

With the information from the State Table, use K-Maps to derive Boolean expressions for the
outputs.

Verify your findings using the Boole-Web feature on LabsLand. Does the circuit schematic look
like what you expected? Why or why not?

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 11

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Develop and Simulate the System with SystemVerilog

Use the Boolean expressions you derived from the previous section to write and test
SystemVerilog code for the string recognizer.

Quartus
Include screenshots of your code with your finished report. Use the following space to describe
the syntax you used and why.

ModelSim
After simulating, draw the simulation curve you see on ModelSim. Make sure to specify your
input and output signals.

Use the following space to describe why the simulation curve you see demonstrates the
behavior we want the string recognizer to have.

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 12

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Demonstrate the System on an FPGA

Send your code to an FPGA in LabsLand, mapping your input and output signals to the FPGA
I/O (switches and LEDs). Describe what you observe in the space below.

How do you know the behavior you observed is that of a string recognizer for “101”?

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 13

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

Reflection and Observations

If you completed all the steps in this lab, you’ve just created your first digital system! Reflect on
the process, things you found interesting, things you found challenging, etc. in the space below.

What did you observe about Quartus and ModelSim? Did you find the tools to be helpful?

What questions do you still have about sequential logic, FSMs, and SystemVerilog, if any?

RHL-BEADLE © 2022 by Rania Hussein is licensed under CC BY 4.0. This project is funded by Intel Corporation. 14

https://rhlab.ece.uw.edu/projects/rhl-beadle
https://people.ece.uw.edu/rhussein/
http://creativecommons.org/licenses/by/4.0/
https://www.intel.com/

